Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562716

RESUMO

Cancer cell fate has been widely ascribed to mutational changes within protein-coding genes associated with tumor suppressors and oncogenes. In contrast, the mechanisms through which the biophysical properties of membrane lipids influence cancer cell survival, dedifferentiation and metastasis have received little scrutiny. Here, we report that cancer cells endowed with a high metastatic ability and cancer stem cell-like traits employ ether lipids to maintain low membrane tension and high membrane fluidity. Using genetic approaches and lipid reconstitution assays, we show that these ether lipid-regulated biophysical properties permit non-clathrin-mediated iron endocytosis via CD44, leading directly to significant increases in intracellular redox-active iron and enhanced ferroptosis susceptibility. Using a combination of in vitro three-dimensional microvascular network systems and in vivo animal models, we show that loss of ether lipids also strongly attenuates extravasation, metastatic burden and cancer stemness. These findings illuminate a mechanism whereby ether lipids in carcinoma cells serve as key regulators of malignant progression while conferring a unique vulnerability that can be exploited for therapeutic intervention.

2.
Trends Ecol Evol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38553315

RESUMO

Rodent middens provide a fine-scale spatiotemporal record of plant and animal communities over the late Quaternary. In the Americas, middens have offered insight into biotic responses to past environmental changes and historical factors influencing the distribution and diversity of species. However, few studies have used middens to investigate genetic or ecosystem level responses. Integrating midden studies with neoecology and experimental evolution can help address these gaps and test mechanisms underlying eco-evolutionary patterns across biological and spatiotemporal scales. Fully realizing the potential of middens to answer cross-cutting ecological and evolutionary questions and inform conservation goals in the Anthropocene will require a collaborative research community to exploit existing midden archives and mount new campaigns to leverage midden records globally.

3.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255761

RESUMO

This work reports the use of cellulose as a template to prepare nanosized WO3 or NiWO4 and its application as a co-catalyst in the electro-oxidation of ethanol and glycerol. Microcrystalline cellulose was hydrolyzed with phosphotungstic acid (H3PW12O40) to prepare the nanocrystalline cellulose template. The latter was air-calcinated to remove the template and obtain nanometric WO3. Tungsten oxide was impregnated with Ni(NO3)2, which was subsequently air-calcinated to obtain the nanometric NiWO4. Elemental analysis confirmed the coexistence of nickel and tungsten, whereas thermal analysis evidenced a high thermal stability for these materials. The X-ray diffractograms displayed crystal facets of WO3 and, when Ni(II) was added, NiWO4. The transmission electron micrographs corroborated the formation of nanosized particles with average particle sizes in the range of 30 to 50 nm. Finally, to apply this material, Pt/WO3-C and Pt/WO3-NiWO4-C were prepared and used in ethanol and glycerol electro-oxidation in an alkaline medium, observing a promotional effect of the oxide and tungstate by reducing the onset potential and increasing the current density. These materials show great potential to produce clean electricity or green hydrogen, contributing to energetic transition.


Assuntos
Etanol , Glicerol , Oxirredução , Celulose , Eletricidade
4.
Methods Mol Biol ; 2751: 47-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265709

RESUMO

The most important advances in our understanding of the viral life cycle, such as genome replication, packaging, transmission, and host interactions, have been made via the development of viral infectious full-length clones. Here, we describe the detailed protocols for the construction of an infectious clone derived from Botrytis virus F (BVF), a mycoflexivirus infecting the plant pathogenic fungus Botrytis cinerea, the determination of the complete sequence of the cloned mycovirus, the preparation of fungal protoplasts, and the transfection of protoplasts using transcripts derived from the BVF infectious clone.


Assuntos
Doenças Transmissíveis , Micovírus , Botrytis , Genética Reversa
5.
Methods Mol Biol ; 2732: 83-101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38060119

RESUMO

Next-generation sequencing (NGS) of total RNA has allowed the detection of novel viruses infecting different hosts, such as fungi, increasing our knowledge on virus horizontal transfer events among different hosts, virus diversity, and virus evolution. Here, we describe the detailed protocols for the isolation of the plant pathogenic fungus Botrytis cinerea, from grapevine plants showing symptoms of the mold gray disease, the culture and maintenance of the isolated B. cinerea strains, the extraction of total RNA from B. cinerea strains for NGS, the bioinformatics pipeline designed and followed to detect mycoviruses in the sequenced samples, and the validation of the in silico detected mycoviruses by different approaches.


Assuntos
Fungos , Plantas , Fungos/genética , Plantas/genética , Sequência de Bases , RNA , Botrytis/genética , Doenças das Plantas/microbiologia
6.
Elife ; 122023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37190854

RESUMO

Dietary compounds can affect the development of inflammatory responses at distant sites. However, the mechanisms involved remain incompletely understood. Here, we addressed the influence on allergic responses of dietary agonists of aryl hydrocarbon receptor (AhR). In cutaneous papain-induced allergy, we found that lack of dietary AhR ligands exacerbates allergic responses. This phenomenon was tissue-specific as airway allergy was unaffected by the diet. In addition, lack of dietary AhR ligands worsened asthma-like allergy in a model of 'atopic march.' Mice deprived of dietary AhR ligands displayed impaired Langerhans cell migration, leading to exaggerated T cell responses. Mechanistically, dietary AhR ligands regulated the inflammatory profile of epidermal cells, without affecting barrier function. In particular, we evidenced TGF-ß hyperproduction in the skin of mice deprived of dietary AhR ligands, explaining Langerhans cell retention. Our work identifies an essential role for homeostatic activation of AhR by dietary ligands in the dampening of cutaneous allergic responses and uncovers the importance of the gut-skin axis in the development of allergic diseases.


Assuntos
Dermatite Atópica , Dieta , Hipersensibilidade , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Células de Langerhans , Ligantes , Receptores de Hidrocarboneto Arílico/agonistas , Pele
7.
Proc Natl Acad Sci U S A ; 119(39): e2122183119, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36136968

RESUMO

Single-molecule electrochemical science has advanced over the past decades and now extends well beyond molecular imaging, to molecular electronics functions such as rectification and amplification. Rectification is conceptually the simplest but has involved mostly challenging chemical synthesis of asymmetric molecular structures or asymmetric materials and geometry of the two enclosing electrodes. Here we propose an experimental and theoretical strategy for building and tuning in situ (in operando) rectification in two symmetric molecular structures in electrochemical environment. The molecules were designed to conduct electronically via either their lowest unoccupied molecular orbital (LUMO; electron transfer) or highest occupied molecular orbital (HOMO; "hole transfer"). We used a bipotentiostat to control separately the electrochemical potential of the tip and substrate electrodes of an electrochemical scanning tunneling microscope (EC-STM), which leads to independent energy alignment of the STM tip, the molecule, and the STM substrate. By creating an asymmetric energy alignment, we observed single-molecule rectification of each molecule within a voltage range of ±0.5 V. By varying both the dominating charge transporting LUMO or HOMO energy and the electrolyte concentration, we achieved tuning of the polarity as well as the amplitude of the rectification. We have extended an earlier proposed theory that predicts electrolyte-controlled rectification to rationalize all the observed in situ rectification features and found excellent agreement between theory and experiments. Our study thus offers a way toward building controllable single-molecule rectifying devices without involving asymmetric molecular structures.

8.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35998043

RESUMO

Energy metabolism failure in proximal tubule cells (PTCs) is a hallmark of chronic kidney injury. We combined transcriptomic, metabolomic, and lipidomic approaches in experimental models and patient cohorts to investigate the molecular basis of the progression to chronic kidney allograft injury initiated by ischemia/reperfusion injury (IRI). The urinary metabolome of kidney transplant recipients with chronic allograft injury and who experienced severe IRI was substantially enriched with long chain fatty acids (FAs). We identified a renal FA-related gene signature with low levels of carnitine palmitoyltransferase 2 (Cpt2) and acyl-CoA synthetase medium chain family member 5 (Acsm5) and high levels of acyl-CoA synthetase long chain family member 4 and 5 (Acsl4 and Acsl5) associated with IRI, transition to chronic injury, and established chronic kidney disease in mouse models and kidney transplant recipients. The findings were consistent with the presence of Cpt2-Acsl4+Acsl5+Acsm5- PTCs failing to recover from IRI as identified by single-nucleus RNA-Seq. In vitro experiments indicated that ER stress contributed to CPT2 repression, which, in turn, promoted lipids' accumulation, drove profibrogenic epithelial phenotypic changes, and activated the unfolded protein response. ER stress through CPT2 inhibition and lipid accumulation engaged an auto-amplification loop leading to lipotoxicity and self-sustained cellular stress. Thus, IRI imprints a persistent FA metabolism disturbance in the proximal tubule, sustaining the progression to chronic kidney allograft injury.


Assuntos
Carnitina O-Palmitoiltransferase , Rim , Animais , Carnitina O-Palmitoiltransferase/genética , Coenzima A , Ácidos Graxos/metabolismo , Rim/metabolismo , Ligases , Camundongos
9.
Pulm Circ ; 12(3): e12107, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35911183

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal vasculopathy that ultimately leads to elevated pulmonary pressure and death by right ventricular (RV) failure, which occurs in part due to decreased fatty acid oxidation and cytotoxic lipid accumulation. In this study, we tested the hypothesis that decreased fatty acid oxidation and increased lipid accumulation in the failing RV is driven, in part, by a relative carnitine deficiency. We then tested whether supplementation of l-carnitine can reverse lipotoxic RV failure through augmentation of fatty acid oxidation. In vivo in transgenic mice harboring a human BMPR2 mutation, l-carnitine supplementation reversed RV failure by increasing RV cardiac output, improving RV ejection fraction, and decreasing RV lipid accumulation through increased PPARγ expression and augmented fatty acid oxidation of long chain fatty acids. These findings were confirmed in a second model of pulmonary artery banding-induced RV dysfunction. In vitro, l-carnitine supplementation selectively increased fatty acid oxidation in mitochondria and decreased lipid accumulation through a Cpt1-dependent pathway. l-Carnitine supplementation improves right ventricular contractility in the stressed RV through augmentation of fatty acid oxidation and decreases lipid accumulation. Correction of carnitine deficiency through l-carnitine supplementation in PAH may reverse RV failure.

10.
ACS Nano ; 16(4): 4989-5035, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35318848

RESUMO

There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.

11.
World J Surg ; 46(5): 1059-1066, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128569

RESUMO

BACKGROUND: We aimed to identify and describe demand-side factors that have been used to support ATLS global promulgation, as well as current gaps in demand-side incentives. METHODS: We performed a cross-sectional survey about demand-side factors that influence the uptake and promulgation of ATLS and other trauma-related CME courses. The survey was sent to each of the four global ATLS region chiefs and 80 ATLS country directors. Responses were described and qualitative data were analyzed using a content analysis framework. RESULTS: Representatives from 30 countries and each region chief responded to the survey (40% response rate). Twenty of 30 country directors (66%) reported that there were some form of ATLS verification requirements. ATLS completion, not current verification, was often the benchmark. Individual healthcare systems were the most common agency to require ATLS verification (37% of countries) followed by medical/surgical accreditation boards (33%), governments (23%), training programs (27%), and professional societies (17%). Multiple credentialing frameworks were reported including making ATLS verification a requirement for: emergency unit or trauma center designation (40%), contract renewal or promotion (37%); professional licensing (37%); training program graduation (37%); and increases in remuneration (3%). Unique demand-side incentives were reported including expansion of ATLS to non-physician cadre credentialing and use of subsidies. CONCLUSION: ATLS region chiefs and country directors reported a variety of demand-side incentives that may facilitate the promulgation of ATLS. Actionable steps include: (i) shift incentivization from ATLS course completion to maintenance of verification; (ii) develop an incentive toolkit of best practices to support implementation; and (iii) engage leadership stakeholders to use demand-side incentives to improve the training and capabilities of the providers they oversee to care for the injured.


Assuntos
Cuidados de Suporte Avançado de Vida no Trauma , Ferimentos e Lesões , Estudos Transversais , Humanos , Motivação , Inquéritos e Questionários , Ferimentos e Lesões/terapia
12.
Pain ; 163(1): 64-74, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34086629

RESUMO

ABSTRACT: Peripheral sensory neurons transduce physicochemical stimuli affecting somatic tissues into the firing of action potentials that are conveyed to the central nervous system. This results in conscious perception, adaptation, and survival, but alterations of the firing patterns can result in pain and hypersensitivity conditions. Thus, understanding the molecular mechanisms underlying action potential firing in peripheral sensory neurons is essential in sensory biology and pathophysiology. Over the past 30 years, it has been consistently reported that these cells can display membrane potential instabilities (MPIs), in the form of subthreshold membrane potential oscillations or depolarizing spontaneous fluctuations. However, research on this subject remains sparse, without a clear conductive thread to be followed. To address this, we here provide a synthesis of the description, molecular bases, mathematical models, physiological roles, and pathophysiological implications of MPIs in peripheral sensory neurons. Membrane potential instabilities have been reported in trigeminal, dorsal root, and Mes-V ganglia, where they are believed to support repetitive firing. They are proposed to have roles also in intercellular communication, ectopic firing, and responses to tonic and slow natural stimuli. We highlight how MPIs are of great interest for the study of sensory transduction physiology and how they may represent therapeutic targets for many pathological conditions, such as acute and chronic pain, itch, and altered sensory perceptions. We identify future research directions, including the elucidation of the underlying molecular determinants and modulation mechanisms, their relation to the encoding of natural stimuli and their implication in pain and hypersensitivity conditions.


Assuntos
Gânglios Espinais , Células Receptoras Sensoriais , Potenciais de Ação , Humanos , Potenciais da Membrana , Dor
13.
Sci Adv ; 7(38): eabg1333, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533988

RESUMO

Late Quaternary precipitation dynamics in the central Andes have been linked to both high- and low-latitude atmospheric teleconnections. We use present-day relationships between fecal pellet diameters from ashy chinchilla rats (Abrocoma cinerea) and mean annual rainfall to reconstruct the timing and magnitude of pluvials (wet episodes) spanning the past 16,000 years in the Atacama Desert based on 81 14C-dated A. cinerea paleomiddens. A transient climate simulation shows that pluvials identified at 15.9 to 14.8, 13.0 to 8.6, and 8.1 to 7.6 ka B.P. can be linked to North Atlantic (high-latitude) forcing (e.g., Heinrich Stadial 1, Younger Dryas, and Bond cold events). Holocene pluvials at 5.0 to 4.6, 3.2 to 2.1, and 1.4 to 0.7 ka B.P. are not simulated, implying low-latitude internal variability forcing (i.e., ENSO regime shifts). These results help constrain future central Andean hydroclimatic variability and hold promise for reconstructing past climates from rodent middens in desert ecosystems worldwide.

14.
EMBO Mol Med ; 13(10): e13742, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34411438

RESUMO

Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.


Assuntos
Lipofuscinoses Ceroides Neuronais , Animais , Reposicionamento de Medicamentos , Humanos , Lisossomos , Glicoproteínas de Membrana/genética , Camundongos , Chaperonas Moleculares/genética , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Fenótipo , Tamoxifeno/farmacologia
15.
EBioMedicine ; 70: 103504, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34311325

RESUMO

BACKGROUND: Localized stress and cell death in chronic inflammatory diseases may release tissue-specific lipids into the circulation causing the blood plasma lipidome to reflect the type of inflammation. However, deep lipid profiles of major chronic inflammatory diseases have not been compared. METHODS: Plasma lipidomes of patients suffering from two etiologically distinct chronic inflammatory diseases, atherosclerosis-related vascular disease, including cardiovascular (CVD) and ischemic stroke (IS), and systemic lupus erythematosus (SLE), were screened by a top-down shotgun mass spectrometry-based analysis without liquid chromatographic separation and compared to each other and to age-matched controls. Lipid profiling of 596 lipids was performed on a cohort of 427 individuals. Machine learning classifiers based on the plasma lipidomes were used to distinguish the two chronic inflammatory diseases from each other and from the controls. FINDINGS: Analysis of the lipidomes enabled separation of the studied chronic inflammatory diseases from controls based on independent validation test set classification performance (CVD vs control - Sensitivity: 0.94, Specificity: 0.88; IS vs control - Sensitivity: 1.0, Specificity: 1.0; SLE vs control - Sensitivity: 1, Specificity: 0.93) and from each other (SLE vs CVD ‒ Sensitivity: 0.91, Specificity: 1; IS vs SLE - Sensitivity: 1, Specificity: 0.82). Preliminary linear discriminant analysis plots using all data clearly separated the clinical groups from each other and from the controls, and partially separated CVD severities, as classified into five clinical groups. Dysregulated lipids are partially but not fully counterbalanced by statin treatment. INTERPRETATION: Dysregulation of the plasma lipidome is characteristic of chronic inflammatory diseases. Lipid profiling accurately identifies the diseases and in the case of CVD also identifies sub-classes. FUNDING: Full list of funding sources at the end of the manuscript.


Assuntos
Aterosclerose/sangue , AVC Isquêmico/sangue , Lipidômica/métodos , Lipídeos/sangue , Lúpus Eritematoso Sistêmico/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade
16.
Front Vet Sci ; 8: 676956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179169

RESUMO

The aim of this study was to estimate the energy and protein requirements for maintenance and growth of lambs. A total of 35 crossbreed Dorper × Santa Ines lambs [31 ± 1.28 kg of initial body weight (BW) and 4 months old] were distributed in a completely randomized design with three treatments groups (ad libitum, 30 and 60% of feed restriction). Five lambs were slaughtered at the beginning of the experimental trial as a reference group to estimate the initial empty BW (EBW) and body composition. When the animals of the ad libitum treatment reached a BW average of 47.2 kg, at day 84 of trial, all lambs were slaughtered. The feed restriction promoted reduction in body fat (P < 0.001) and energy concentration (P < 0.001), while protein showed a quadratic response (P = 0.05). The equations obtained for NEg and NPg requirements were 0.2984 × EBW0.75 × EBWG0.8069 and 248.617 × EBW-0.15546, respectively. The net energy (NEm) and protein (NPm) for maintenance were 71.00 kcal/kg EBW0.75/day and 1.76 g/kg EBW0.75/day, respectively. In conclusion, the NEg and NPg requirement for lambs with 30 kg of BW and 200 g of average daily gain (ADG) were 0.736 Mcal/day and 24.38 g/day, respectively. Our findings indicate that the NEm for crossbreed Dorper × Santa Ines lambs is similar to those recommended by the international committees; however, we support the hypothesis that the requirements for gain are lower.

17.
Sci Rep ; 11(1): 12635, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135378

RESUMO

The study of ancient DNA is revolutionizing our understanding of paleo-ecology and the evolutionary history of species. Insects are essential components in many ecosystems and constitute the most diverse group of animals. Yet they are largely neglected in ancient DNA studies. We report the results of the first targeted investigation of insect ancient DNA to positively identify subfossil insects to species, which includes the recovery of endogenous content from samples as old as ~ 34,355 ybp. Potential inhibitors currently limiting widespread research on insect ancient DNA are discussed, including the lack of closely related genomic reference sequences (decreased mapping efficiency) and the need for more extensive collaborations with insect taxonomists. The advantages of insect-based studies are also highlighted, especially in the context of understanding past climate change. In this regard, insect remains from ancient packrat middens are a rich and largely uninvestigated resource for exploring paleo-ecology and species dynamics over time.


Assuntos
Artrópodes/genética , DNA Antigo/análise , Análise de Sequência de DNA/veterinária , Sigmodontinae/parasitologia , Animais , DNA Mitocondrial/genética , Fósseis , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 28S/genética , Sigmodontinae/genética
19.
ACS Sens ; 6(2): 477-484, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33411533

RESUMO

In the nonresonant regime, molecular conductance decays exponentially with distance, limiting the fabrication of efficient molecular semiconductors at the nanoscale. In this work, we calculate the conductance of a series of acene derivatives connected to gold electrodes using density functional theory (DFT) combined with the nonequilibrium Green's function (NEGF) formalism. We show that these systems have near length-independent conductance and can exhibit a conductance increase with molecular length depending on the connection to the electrodes. The analysis of the molecular orbital energies and transmission functions attribute this behavior to the dramatic decrease of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap with length, which shifts the transmission peaks near the Fermi level. These results demonstrate that the anchoring configuration determines the conductance behavior of acene derivatives, which are optimal building blocks to fabricate single-molecule devices with tunable charge transport properties.


Assuntos
Ouro , Nanotecnologia , Eletrodos , Semicondutores
20.
Phys Chem Chem Phys ; 23(2): 1550-1557, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33404568

RESUMO

We present a theoretical and computational work and demonstrate that cross-conjugated molecules with electron-donating groups are efficient rectifiers with high conductance. The rectification ratios obtained are up to one order of magnitude at an applied bias voltage of 0.3 V. The use of electron-withdrawing groups to form donor-bridge-acceptor triads gives rectification ratios of the order of 102. We found that the high rectification results from localizing the Highest Occupied Molecular Orbital (HOMO) at one end of the molecular device. When the HOMO is localized, quantum interference effects substantially enhance rectification. Our observations rely on transport calculations of linearly-conjugated and cross-conjugated molecules using Non-Equilibrium Green's Function Technique and Density Functional Theory (NEGF-DFT). Analysis of transmission functions suggests a dependency of the rectification ratio on the anti-resonance peak position near the Fermi level of the electrode, allowing the possibility to modulate molecular rectification through electrochemical gating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...